On the mechanism of the acid-catalyzed hydrolysis of uridine to uracil. Evidence for 6-hydroxy-5,6-dihydrouridine intermediates.

نویسندگان

  • J J Prior
  • D V Santi
چکیده

In acidic media, the 5,6-double bond of uridine is rapidly hydrated to give a small amount of 6-hydroxy-5,6-dihydrouridine (Urd-H2O), the mechanism of which is known from studies of the acid-catalyzed dehydration of Urd-H2O (Prior, J. J., Maley, J., and Santi, D. V. (1984) J. Biol. Chem. 258, 2422-2428). In addition to dehydration, Urd-H2O also undergoes direct hydrolysis of the N-glycosidic bond in acidic solution. The kinetics of the above reaction demonstrates that Urd-H2O, or an intermediate in the pathway leading from Urd to Urd-H2O, is kinetically competent to account for the hydrolysis of the N-glycosidic bond of Urd. The hydrolysis of (1'-2H)Urd proceeds with an alpha-secondary deuterium isotope effect of kH/kD of 1.11 at 25 degrees C. This isotope effect is sufficiently large to implicate carbonium ion character at the 1'-carbon during hydrolysis but, since it is not the maximal value expected, suggests that N-glycoside cleavage is rate-determining with a transition state intermediate between reactant and products. Importantly, the hydrolysis of [6-3H]Urd proceeds with a substantial inverse secondary isotope effect of kT/kH = 1.15 at 25 degrees C which indicates some degree of sp2 to sp3 rehybridization of C-6 of the pyrimidine moiety during hydrolysis. From the data available, it appears that an important pathway in the hydrolysis of the N-glycoside bond of Urd involves either spontaneous cleavage of Urd which is protonated at the 5-carbon or a protonated species of Urd-H2O. The studies described here, together with the known susceptibility of the 6-position of pyrimidine heterocycles toward nucleophiles, permits the proposal of chemically reasonable mechanisms for enzyme-catalyzed cleavage of N-glycosidic bonds of pyrimidines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Component and Click Strategy for Synthesis of β-Hydroxy 1,4-Disubstituted 1,2,3-Triazoles Derivatives Catalyzed by 1,4-Dihydroxyanthraquinone-copper(II) Complex onto Nano AlPO4

In this work, copper(II) heterogeneous nanocatalyst supported on modified AlPO4 (Cu(II)-DA@Nano AlPO4) was used for the synthesis of some biological active heterocyclic molecules, particularly for the efficient conversion of a wide range of non-activated terminal alkynes to β-hydroxy 1,4-disubstituted 1,2,3-triazolethrough a three-component “click” reaction at room temperature in water. The reg...

متن کامل

Dehalogenating and NADPH-modifying activities of dihydropyrimidine dehydrogenase.

Dihydropyrimidine dehydrogenase (DPDase) catalyzed the debromination of 5-bromo-5,6-dihydrouracil (BrUH2) to uracil at pH 7.7 and 37 degrees C. The debrominating activity of DPDase was increased 5-fold by treatment with H2O2, whereas the dehydrogenating activity was inhibited by this treatment. The time course for increasing the debrominating activity by H2O2 was similar to that for decreasing ...

متن کامل

A polymerase engineered for bisulfite sequencing

Bisulfite sequencing is a key methodology in epigenetics. However, the standard workflow of bisulfite sequencing involves heat and strongly basic conditions to convert the intermediary product 5,6-dihydrouridine-6-sulfonate (dhU6S) (generated by reaction of bisulfite with deoxycytidine (dC)) to uracil (dU). These harsh conditions generally lead to sample loss and DNA damage while milder conditi...

متن کامل

The formation of cytidine nucleotides and RNA cytosine from orotic acid by the Novikoff tumor in vitro.

The utilization of orotic acid for the formation of RNA ~ uracil has been extensively studied in intact animals, tissue slices, and cell suspensions (reviewed in Refs. 5, 31). The mechanism of the utilization, via the initial conversion of orotic acid to uridine nucleotides and the incorporation of uridine nucleotides into polynucleotides, has been partially described in intact animals (13, 17)...

متن کامل

A novel and efficient procedure for the preparation of benzyl alcohol by hydrolysis of benzyl chloride catalyzed by PEG1000-DAIL[BF4]/Fe2(SO4)3 under homogeneous catalysis in aqueous media

In this work, benzyl alcohol was obtained in 96% excellent yield by hydrolysis of benzyl chloride catalyzedby the recyclable temperature-dependant phase-separation system that comprised the ionic liquid PEG1000-DAIL[BF4], toluene and ferric sulfate under homogeneous catalysis in aqueous media. This novel methodnot only enhanced the yield, but also made the operating units easy workup. The catal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 259 4  شماره 

صفحات  -

تاریخ انتشار 1984